Search results

Search for "nitrogen-doped carbon materials" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • explored as advanced cathode materials for LOBs, owing to their controllable pore structure with a high surface-to-volume ratio and excellent electrical conductivity [13][14]. In particular, nitrogen-doped carbon materials have shown electrocatalytic activity towards the ORR and/or OER, which would be a
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • OER catalysts or catalyst support and the activities were far lower than that of benchmark OER catalysts [38][39]. At present, there are no reports about nickel/CTF catalysts for electrochemical OER studies, to the best of our knowledge. Although various carbon materials or nitrogen-doped carbon
  • materials have been utilized to support nickel as electrocatalyst for the OER, novel materials with high catalytic activity and strong durability still need to be investigated (Table S3, Supporting Information File 1). In our study, by using CTFs we have the advantages of abundant aromatic nitrogen atoms
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • Innovation Centre for Engineering, 9211 - 116 Street, AB T6G 1H9 Edmonton, Canada Ruhr-Universität Bochum, Department of Inorganic Chemistry, Universitätsstrasse 150, 44801 Bochum, Germany 10.3762/bjnano.10.157 Abstract We developed an upcycling process of polyurethane obtaining porous nitrogen-doped carbon
  • materials that were applied in supercapacitor electrodes. In detail, a mechanochemical solvent-free one-pot synthesis is used and combined with a thermal treatment. Polyurethane is an ideal precursor already containing nitrogen in its backbone, yielding nitrogen-doped porous carbon materials with N content
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • on nitrogen-doped carbon materials, it has been shown that nitrogen doping of the carbon provides sites for Co incorporation. On such supports, cobalt is usually found in the ionic state in a CoN4 environment. XPS characterization of Co single atoms on nitrogen-doped carbon has shown two peaks for Co
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • of the nitrogen functionalities. Keywords: electrocatalysts; microporosity; nitrogen-doped carbon materials; oxygen reduction reaction; surface chemistry; Introduction Due to the recent increase in interest for more sustainable, renewable and cheaper energy, multiple conversion devices are being
  • , depends on the precursors used and the method of synthesis applied. Nitrogen-doped carbon materials have been synthesized by applying different doping methods to different types of materials, such as CNTs [12][23][26], graphene [20][25][27], carbon aerogels [15][28], carbon nanofibers [29], carbon
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019
Other Beilstein-Institut Open Science Activities